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Abstract 

The basic partial differential equations a re  derived for an 

atmospheric gravity wave at the internal interface of a two-layer, 

incompressible model. 

ing lower boundary. 

the method of characteristics for various values of: (1) the initial 

acceleration of the wave-generating-mechanism and ( 2 )  lower boundary 

slope. 

The model has a plane, sloping, non-rotat- 

These equations are numerically integrated by 

An analysis is made for the effects of the modelling para- 

Formulas meters on the point a t  which the wave begins to break. 

for the point of initial breaking a r e  obtained by perturbation analy- 

sis of the characteristic equation of the partial differential equations 

of the gravity wave. 

pare quite well with the results of the numerical integration. 

simple attempt is made to evaluate the plausibility of the hypotheti- 

cal connection between the breaking atmospheric wave and the squall 

line. 

The results for the perturbation solution com- 

A 
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1. Introduction 
~~ 

In the status report issued for this project, Miller and 

Greenfield (1962), the basic problem and method of attack were 

outlined. 

of solution and results. 

This report will cover the details of the problem, method 

A solitary wave is defined hydrodynamically as a single 

elevation of fluid which, if properly started, will travel for a con- 

siderable distance in  a uniform channel. The amplitude of this wave 

does not have to be small compared with the fluid. Some discussion 

of such a wave in the context of classical hydrodynamics may be 

found in Lamb (1945). A wave of this type will, in general, not 

conserve i ts  form. 

amplitude will overtake the lesser  amplitude, leading part  of the 

wave eventually, resulting in the breaking of the wave. 

In special cases ,  as shown by Lamb, maintenance of a 

permanent solitary wave can be achieved i f  proper vertical ac- 

celerations a re  introduced in the fluid. 

cussed both the permanent and breaking solitary wave in the 

atmos phe re. 

In fact, since it is a gravity wave, the maximum 

Abdullah (1955) has dis -  

The atmospheric solitary wave is a small  scale phenomenon 

relative to the horizontal dimensions of the synoptic features (cyclones, 

anticyclones, etc. ) which the meteorologist normally deals with. Thus, 

only the relatively recent establishment of some experimental small  

scale observing networks provided evidence of the phenomena which 

a r e  apparently associated with the solitary wave. F rom analysis of 

1 
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data obtained f rom such a network, Tepper (1950) postulated a 

mechanism for the formation of squall lines. 

line of thunderstorms of strong intensity accompanied by high wind 

gusts, pressure r ises ,  temperature falls, and heavy showers. These 

squall lines a r e  normally associated with cold fronts, forming in the 

warm a i r  ahead of the front roughly parallel to it. Tepper showed 

that most of the features of a squall line, which passed through a 

micro-scale observing network, could be explained by a gravity wave 

propagating on an inversion ahead of the front. 

a "pressure jump" wi l l  form in the wave when the slope of the lead- 

ing edge approaches the vertical. 

sure jump is identified as  a squall line. 

A squall line is a 

According to Tepper 

It is his hypothesis that this pres- 

Abdullah ( 1 9 5 5 ) ,  as pointed out ear l ier ,  discussed both 

the permanent and breaking atmospheric solitary wave. The theory 

of the breaking solitary wave is the same as  that of the pressure jump 

line. The theory is such that the governing equations lend themselves to the 

method of characteristics. By means of this method, the differential 

equations may be integrated to give unique solutions. 

As pointed out by Abdullah, the breaking solitary wave would 

lead to a release of mechanical energy through the turbulence which 

results f rom the breaking process. This energy will be added to the 

process of the mechanical lifting of the air in contact with the propagat- 

ing wave. By this means sufficient lifting may occur to release any con- 

ditional instability which may exist in the air above the wave. It is 

Abdullah's hypothesis that such a mechanism is capable of producing 

locally severe weather. Thus, Abdullah's theoretical reasoning supports 
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Tepper's ideas concerning squall lines. 

It should be noted that both Tepper and Abdullah considered 

the propagation of the solitary wave over a horizontal, plane underlying 

surface. Abdullah (1961) proposed that the effect of a sloping, under- 

lying surface on the wave be investigated. The major portion of this 

report deals with that investigation. 

2. Derivation of the equations 

Consider two incompressible, homogeneous fluids, one 

below the other on an inclined non-rotating plane. 

ordinate system be established such that the origin is at some point 

on the inclined lower boundary. 

tion in the y direction. 

Let a Cartesian co- 

It is assumed that there is no varia- 

Thus, the model appears as shown i n  Figure 1. 

The interface between the lower fluid of density p and the 

upperfluid of densityp 

a r y  of the two layer atmosphere is at H which is much greater than h 

The height of the inclined lower boundary is 7 which is a linear function 

of x. 

is initially at a height of ho. The upper bound- 

0' 

0 

The governing equations for the lower fluid a r e  the equation 

of continuity: 

and the equations of motion: 

where u and w a r e  the horizontal and vertical wind components re- 

SPectivelY, t is time, p is pressure, and g is the gravitational 
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Figure 1 .  The model 

x 
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' -  

acceleration. 

Note that in equation (3) vertical accelerations have been 

neglected; i. e . ,  the fluid is in hydrostatic equilibrium. As pointed 

out in  the previous section, this assumption will not permit the perma- 

nent solitary wave. 

Now, the equation of continuity, (1). is vertically integrated 

between the surface and the internal boundary, thus: 

h 
c f dz+ \, - aw dz = 0 
u az 

(4) 

B B 
where h i s  the height of the interface at any time. Consider the f i r s t  

t e rm in  (4). Applying Liebnitz' rule for differentiation of a definite 

integral ( see  Bronwell, 1953): 

If we assume u is not a function of height ( i t  shall be shown that this 

i s  true under the proper initial conditions), this last equation becomes: 

The second t e rm in  equation (4) becomes: 

h 

but 
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- ah ah 
Wh = - a t  ax - +  u- 

and 

thus 

h 

Finally, substituting equations ( 5 )  and (6) in (4); 

Now, if the hydrostatic equation (3) is integrated from the top of the 

model to some height z i n  the lower fluid. 

Now if we assume H is a t  a height such that it is unaffected by horizon- 

talvariations in the lower fluid and that p is horizontally uniform, H 
then from (8) i t  follows that: 
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Using this result  i n  equation (2): 

F rom this equation, i t  i s  clear that if u is not initially a function of 

height i t  is never a function of height. 

pr ior i  in  the integration of the equation of continuity. 

This result was assumed a 

Defining a "density weighted" gravitational acceleration as: 

g ' ,  ( P - P o )  g 

P 
then equation (9) becomes : 

a U  a U  ah - t u - +  g ' -=  0 a t  ax ax 

The system of equations which describes the conditions with- 

in the lower fluid is made up of equations (7) and (10). According to 

Stoker (1948) this system of equations was first given, in a slightly 

different form, by Lagrange in 1781. 

At this point the notation will be changed so that a subscripted 

variable will indicate partial  differentiation with respect to that variable. 

The essentials of the following discussion and method of deriving the 

characterist ic equations for the above system of equations can be found 

in Courant and Friedrichs (1948). 

the basic concept involved in this method. Consider a function of two 

independent variables, x and t, say  f(x,t). Now a linear combination, 

a fx + b f t ,  of the partial  derivatives of f(x,t) means, geometrically, 

differentiation of f(x, t )  in  a direction given by the relationship 

It is of some interest  to examine 

d x a  
6' 
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Analogously, if a curve i s  defined parametrically by 

x(u), t(u), with dx:dt = a:b then af t b f  is a derivative of f along 
X t 

this curve. In essence, the relationship between the coefficients 

of the partial  derivatives is defined in  such a way that the total de- 

rivative of the function is determined. Moreover, the total differ- 

entiation is along the defined curve. 

Consider now the system of equations which has been de- 

rived above: 

L = u  t u u x t  g’hx = 0 1 -  t 

L2 =ht t [U (h - 7) 1, = 0 ( 7 4  

It i s  desired to determine a linear combination of this system of 

equations such that the derivatives of h and u, generally in  two different 

directions, combine to derivatives in the same direction. This linear 

combination is given by: 

L = A ,  L1 4- A2L2 

The direction which will be determined depends on the point x ,  t 

and the values of h and u at that point and is called a characterist ic 

direction. 

Forming the linear combination of the system of equations 

and grouping the coefficients by derivatives yields: 

As discussed previously, i t  is desired to define character-  

istic curve x(u), t(u), such that: 
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Also since 

d = I )  d 
rl x x  

then - X2u = dx 

From (1  1) i t  follows that: 

x1 dx - [Il u + A, (h - ?$I dt = 0 

and 

Now rearranging equations (12), (13) and (14) in terms of 

l1 and X2: 

(dx - udt)X1 - [h - q)dt]X2 = 0 (15) 

Since equations (15) and (16) a r e  homogeneous, the determinant of the 

coefficients of these equations must vanish for X 

i. e . ,  for  the direction x(u), t(u) to exist. Thus: 

and X to exist or, 1 2 

2 ( d x  -ud t )2  - g' (h - I)) dt = 0 

or 

dx Solving for  dt: 
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This equation defines the family of characterist ics i n  the 

x,tplane. Note that fo r  the characteristics to be real, h must be 

greater than ?) Physically, this is an obviously meaningful condition 

since it i s  c lear  that fo r  a wave to exist on the internal boundary, this 

boundary must be above the underlying surface, i. e. , h must be greater 

than q. 

This particular condition also requires the original partial 

differential equations to be hyperbolic. Courant and Friedrichs have 

shown that a system of differential equations must be hyperbolic i n  

order to apply the method of characterist ics.  

The family of characteristics which is defined by equation 

(18) i s  considered in te rms  of two sub-sets, namely the families of 

positive and negative characteristics. 

by 

The positive family is defined 

dx c,: = u t c  

and the negative family by: 

where 

c s, /gl  (h  - q )  (21) 

Equation (21) defines a propagation speed of a disturbance 

It can readily be shown that on the interface between the two fluids. 

if the equations for  the model being used he re  had been derived in the 

manner of classical  gas dynamics, the local "sound speed" would have 

been given by (21). Moreover, i t  can be shown that the differential 
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equations which have been derived, (7) and ( l o ) ,  a r e  identical in 

form with the equations of gas dynamics for one-dimensional, 

compressible, adiabatic flow (Stoker, 1948). The physical meaning 

of equation ( 2  1) will be clarified shortly. 

It is clear that to determine a positive o r  negative charact- 

erist ic curve a t  any point (x, t) another equation i s  necessary for each 

sub-set since there a r e  two dependent variables u and c (or  h). 

While these "equations of compatability" can be derived by continuing in  

the manner of Courant and Friedrichs, doing so would involve a certain 

amount of tedious algebra. Fo r  the sake of brevity and additional 

physical interpretation, i t  is desirable to derive the equations of 

cornpatability as Stoker (1948) has done it. 

It is now necessary to reformulate the system of different- 

ial equations (7a) and (loa) i n  t e rms  of c. F r o m  equation (21): 

and 

c -  - g'ht 
t -  2c 

since n is independent o f t .  

If the quantities c ,  cx, and ct  as defined by (21), (22)  and 

(23)  are introduced into (7a) and (loa) the following equations result: 

u t u u  t 2 c c  + g ' q x  = 0 t X X 

2 c t +  2 u c  + cux = 0 
X 

Now, if equations (24) and (25) are added the result  can readily be 

put in the following form: 
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+ 0 

Since nx is constant in  the model being considered, g ' n  has been 

taken to be a constant, m. 
'X 

Analogously, subtraction of (24) f rom (25) yields: 

Stoker (1948) shows that c represents the speed at which a disturbance 

propagates relative to the fluid whose speed is u. 

The equations of compatability have now been derived. In 

summary, two families of characteristics, C, and C , have been de- 

rived on thex, t plane. They are  defined by the following ordinary 

differential equations: 

- 

\ C + : = = u + c  dx 

.I dx c- : r  = u - c  

Moreover along these characteristics the following is true: 

u + 2c + mt = k 

u - 2c + mt  = k 

= const. along a given C 

= const. along a given C 
+ } (29) 

1 

- 1 

where rn H g 'q  

equivalent to the original system (7a) and (loa). 

tion of one system yields a solution of the other. 

It is clear that the system (28) and (29) is exactly 

Therefore, the solu- 

X' 

There are several  important properties which make the 

use of the method of characteristics a particularly useful mathemat- 

ical  tool. These are:  

1. As the finite differences used in approximating the 
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characteristic equations (28) and (29) approach zero, 

the solution for u and c of the finite difference scheme 

converge to the solution of the characteristic equations 

corresponding to the given initial o r  boundary conditions. 

It follows that fo r  small enough finite differences solutions 

for u and c of the original system of equations can be 

determined by applying the method of characteristics. 

This property holds only if  the prescribed initial 

boundary values of u and c a r e  "sufficiently regular" 

functions of x and t. 

piecewise continuous they are sufficiently regular. (See 

Courant and Friedrichs, 1948). 

The solutions of the finite difference approximations of 

the characteristic equation are always computationally 

stable, i. e . ,  they will not grow indefinitely with time. 

This property has been explained by noting that the finite 

difference equations a r e  such that the computational grid 

is being continuously modified by the equations in such a 

way that the space and time differences are always with- 

in the ratio prescribed by the computational stability 

cr i ter ia .  

m y  be found in Sauer (1952), sec. 16. 

If these prescribed values a r e  

2 .  

The proof of the convergence of such solutions 

As Courant and Friedrichs have shown, convergence of the 

characteristics indicates a compression wave, i. e . ,  a disturbance 

resulting from compression of the fluid. Moreover, the point of 
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initial intersection of two characteristics, in the case of a model such 

as the one being used in this investigation, corresponds to the position 

and time of the onset of "breaking" of the atmospheric wave. 

The importance of the breaking atmospheric wave was dis-  

cussed in the introduction. F o r  the purpose of this study, then, the 

position and time of breaking as obtained from the characteristic solu- 

tion is of primary interest. This feature of the wave will be examined 

as it relates to variations in  the model, particularly the slope of the 

underlying surface. 

3. The wave generating mechanism 

The mechanism which is employed to generate the disturbance 

on the interface is  the same as that postulated by Abdullah (1955). The 

mechanism is a vertical density discontinuity which is an idealized 

model of a quasi-stationary front. It might be noted here that a vertical 

front cannot exist in the real  atmosphere, but for the sake of simplicity 

such a front will be used in the model. 

f rom the origin of the model into the initially stagnant two-layer at- 

mosphere, thereby generating a compression wave on the internal 

interface. 

This idealized front moves 

After some time, the front stops and returns to i ts  initial 

position producing, in  the process, an expansion wave which follows 

the compression wave. 

ed with the properties of the breaking wave, the expansion wave will 

Since this investigation is primarily concern- 

not be considered. 
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The position of this front at any time is given by 

b 

x = a (1 - cos 2 t )  X 
0 

where a is amplitude of the "frontal oscillation", x is some scale 

length, and c is some scale speed, both of which wil l  be discussed 

in the next section. 

0 

0 

It follows that the velocity of the front is: 

c a  C - dx - -- .o 
dt xo sin (2 ) 

0 

and the frontal acceleration i s  given by: 

2 

2 

2 c a  
d x = o  cos(> t) 

0 X 
0 

dt2 

4. The computational scheme 

A s  discussed previously, the problem of determining the 

position and time at which the wave breaks becomes the problem of 

determining the point at which any two positive characterist ics in- 

te rsec t  

generating ''front" (equation [32]), it is apparent that the maximum 

acceleration occurs initially (t = 0). The acceleration of the front 

then decreases with time. Under these conditions, it is reasonable 

to expect that breaking wi l l  f irst  occur at the leading edge of the 

wave. 

be indicated by the intersection of the second and first positive 

characteristics, 

From the expression for  the acceleration of the wave 

Therefore, the position and time of initial breaking should 
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It follows that the computational scheme should consist 

of numerically integrating the characteristic equations (28)and(29) 

in  finite difference form to determine this  intersection. 

condition i s  definedby the motion of the front (30). The numerical 

integration will be carr ied out until the intersection of the f i r s t  

and second positive characteristics is determined. 

The boundary 

Before deriving the finite difference equations it is ad- 

vantageous to make the continuous equations non-dimemional. 

Obviously, the solutions of the non-dimensional equations will  be 

numerically more tractable and more importantly, they will be 

more generally applicable. In order to make the charac te r i s t ic  

equations non-dimensional the following scaling pa rame te r s  will 

be used: 

where ho = undisturbed height of the internal in te r face  at the o r i g i n  

(x = 01, thus, co i s  the initial wave speed at the leading  

edge of the wave. 

2. x 0’ some arbi t rary scale length. 

?hen making use of these parameters ,  &e following non-dimensional 

variables a r e  defined: 

u* =u/co  x* x /  xo 

c* = c / c o  

g* = (xo/c 0 ‘1 g’ = xo/ho 
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Substitution of these relationships into the characteristic equations 

(28, 29) results in the following non-dimensional characteristic 

equations for the two families of characterist ics,  Ct and C : - 

and the non-dimensional equations of compatability: 

u* t 2 c8  t Gt* = kl  along a given C, 

u t  - 2 c* t Gt* = k2 along a given C- 

xo Q, 

h where G r  
0 

Now a non-dimensional amplitude for the "frontal oscil- 

lation" is defined as: 

a* = a t x  
0 

Then substitution of this definition and the definition for the non- 

dimensiond time, t*, into the equation for the frontal motion (30) 

yields : 

x* = a* ( 1  - cos t*) (35 )  

and along the boundary curve 

u* = a* sin t* 

Then, the system of non-dimensional equations (33) and 

(34) is a closed set  which can be solved by numerical integration. 
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~ . 

Equations (35) and ( 3 6 )  represent analytic boundary conditions. It 

is  necessary to specify an initial condition in order to solve the 

system. The initial condition which is used i s  that the fluids a r e  

at res t .  

Under these conditions, the "initial characteristic", 

i. e . ,  the positive characteristic in the x,t plane which separates 

the region of r e s t  f rom the disturbed region, can be explicitly 

derived, This characterist ic represents,  physically, the leading 

edge of the wave. Along this characterist ic,  by the initial condi- 

tion, u* = 0. 

tion for this characterist ic is: 

Therefore, from equation (33), the differential equa- 

dx* - = c* 
dt * 

and from equation (34)  along the initial characteristic: 

(37) 

2c* + Gt" = kl (38) 

It i s  obvious that this characterist ic must pass through the origin 

(x* = t* = 0) since the wave is generated from that point. Also at  

the origin c* = 1 from the definitions of c* and co. 

f rom equation (38) that k = 2 and: 1 

It follows, then, 

c*= 1 - 1 / 2  Gt" (39) 

Then combining equations (37) and (39) yields: 

dx* 
dt* 
- = 1 - 1 / 2  Ct"  

which can be integrated yielding the equation for the initial charact- 
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Therefore, the initial characteristic i s  a parabola whose vertex 

is at x* = 1 /G = ho/xovx. 

It was pointed out in the derivation of the characteristic equations 

that in order to insure that the original system of equations be 

hyperbolic and to maintain a physically realistic model the under- 

lying surface must not intersect the internal interface, i. e . ,  

Therefore, x the limiting value of x is given r ) = q X x <  ho L’ 

by: 

If x is  made non-dimensional: L 

hO 

xoQx 
x* = - 

Thus, it is clear  that the vertex of the initial characterist ic occurs 

at  the point xCL which can be considered the horizontal limit of the 

model. This is  physically realistic since this essentially means there 

can be no propagation of the disturbance beyond that point. 

It is clear from equation (40) that the initial characteristic 

may be discretely generated by taking a finite time interval, say 

6t*, and letting 

t* = N6t* N = 0, 1, 2, --- 
in equation (39). 

mensional and aster isks  will be eliminated. 

the second characterist ic must be determined. Consider the follow- 

ing diagram (Figure 2): 

From this point on all variables will be non-di- 

Now the f i r s t  point on 
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t 

BOUNDARY CURVE 
x = a (  I - cos t )  

. - c+2 

Figure 2 .  Determination of the foot of C, 2 .  
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For  the sake of clarity later,  the point on the f i r s t  

characteristic will be designated by the subscript 3 and the f i r s t  

point on the second characteristic wil l  be designated by the sub- 

script  4. 

(x4, t4) is determined by the intersection of the negative character-  

istic emanating from (x 

Note that the first  point on the second characteristic 

t ) and the boundary curve. 

P r io r  to considering the system of equations which must 

be solved to determine the f i r s t  point on the second charaxter is t ic ,  

i t  is necessary to express the differential equations for the character-  

istics (33) in finite difference form. It will be assumed that the spatial 

and temporal scales a re  sufficiently small  so that the generally cur-  

ved characterist ics can be approximated by straight line segments 

between the computational points. It will further be assumed that the 

slope of the straight line segment be approximated by the mean of 

the slopes a t  the end points. 

in Figure 3. 

thus, the pertinent positive characteristic line segment is between 2 

and 4 and the pertinent negative characterist ic line segment i s  bet- 

ween 3 and 4. 

under the above mentioned assumptions equations (33) become 

(again ignoring the asterisks):  

3’ 3 

Consider the general situation as shown 

In this diagram the values a t  point 4 a r e  the unknowns 

Using these numbers a s  identifying subscripts and 

c + : (x4  - X2) = 1/2 (u 4 + c 4  + u2 + cz )  (t4 - tz) (42a) 

c - :(x4 - x3) = 1/2 (u4 -c4 + u3 - c3) ( t4  - t3) (42b) 

Also, if  the subscripts a r e  applied to the equations of compatability 

(34) they become: 
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Figure 3. Schematic of general situation on characteristic plane. 
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u4 t 2 c4 t G t4 = uz t 2 c2 t G t along C, 

u4 - 2 c  

2 

- + Gt4 = u3- 2 c  
4 3 t Gt3  along C 

In the case where point 4 is on the boundary curve, the equations which 

apply along the boundary curve (35) and (36) become: 

x4 = a ( l  - cos t4) 

u4 = a(sin t4) (45 

( 44) 

The positive characteristic between 1 and 3, in the scheme bzing 

used here,  is the initial characteristic. The generation of this 

characteristic has already been discussed. To complete the system 

of computation equations, the equations for generating the initial 

characteristic using the subscript notation follow f rom (39) and (40): 

x3 - - t3 - $t4 

c 3 = L G t  7 - 3  

(46) 

(47) 

and of course the generating mechanism is 

t 3  = tl  + 6t (48) 

where 6t is the specified time interval. 

Returning now to the problem of determining the f i r s t  

point on the second characteristic, from the previous discussion 

the closed system of equations is made up of: (42b). (43b), (44) 

and (45). 

unknowns which must be determined are x4, t4, u4, and c4. 

gebraic operations on the system leads to a single equation in one 

unknown, t4: 

In this system from the initial condition u3 = 0. The 

Al- 

2arZ cos t4+  1/2 (t4 - t3) s i n t  ] =4a-4x3 +At3-[A+ G(t3 -t4]t4 (49) 4 

where A = G t 3  - 4 c3. 

This is a transcendental equation i n  tq, with a trigonometric function 
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of t on the left hand side and an algebraic function of t4 on the right 

hand side. The solution for  t4 may be reasonably approximated from 

(49) by a straightforward iteration scheme. 

is made. Since i t  is known that t 

By an orderly ser ies  of steps the approximation is improved so 

that finally the e r r o r  in t is no more than + 0.002. 4 - 
4 4 4 

4 

4 An initial guess for t 

the f i r s t  guess for t4  i s  t3. > t 4 3  

Upon determining t f rom (49), x and u follow directly 

f rom (44) and (45) respectively. Now knowing x t and u from 

equation (43b) c4  can be directly computed. The f i rs t  point on the 

second characteristic has now been fully determined. Now those 

points which were subscripted 3 become subscripted 1 and those 

which were subscripted 4 become subscripted 2.  Then by equations 

(46)' (47) and (48) the next point on the first characteristic is gene- 

rated and subscripted 3. Thus, the situation is a s  shown in Figure 

3 with point 4 the unknown point. The closed system of equations which 

must be solved for x4, t4, u c a r e  (42a and 42b) and (43a and 43b). 

To simplify the computation the right hand side of (43a) is determined 

just once a s  a constant from the values a t  the f i r s t  point on the second 

characteristic. Thus immediately after determining that point the 

constant is computed so that equation (43a) is replaced by: 

4' 4 4' 

4' 4 

U4 t 2 c 4 +  Gt4  = Z (43a) 

where 2 is the constant Thealgebraic operations involved in  solving 

this system will not be displayed here. The resulting equations a r e  

shown in the program found in the appendix of this report. Starting 

from the changing of the subscripts, the entire operation of 
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u4, and c 4 determining x4, t4, 

ber 43 through two statements before statement number 66. 

i s  to be found from statement num- 

The final part of the scheme, and in fact the part  which 

will yield the results with which this report i s  concerned, involves 

the determination of the values a t  the intersection of the second and 

f i r s t  char ac t e r i s ti c s . 
The nature of the characteristics is such that, prior to 

intersection, t 

the reverse is true. 

point 4 a test of the sign of (t3 - t4) is used to determine whether 

intersection has already occurred. 

of subscripts is effected and the next point is determined. If ( t3 - t4) 

is positive the intereection is determined. 

and t a r e  printed out as the intersection values. 

must be greater than t3 whereas after intersection 4 

Thus'after the computation of the values at 

If (t3 - t ) is negative the change 4 

4 If (t3 - t4) is zero x 

4 

In the case where the values a t  intersection must be de- 

termined the following system of equations is solved: 

M - x1 = (ul  + cl) (t t  'tl) ( 5 0 )  

M - x1 = (u2 + cz) (tt -t2) (51)  

These equations a r e  the finite difference fo rm of the differential 

equations for the positive characteristics emanating from points 1 

and 2 ( see  Figure 3) and intersecting a t  the point xx, tt. Clearly, 

if x4, t4 has been determined to be beyond the intersection point, 

the points 1 and 2 must be used to determine the intersection. 

Also, since at  intersection u and c a r e  multi-valued, it must be 

assumed that the slopes of the two straight line approximations have 
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the values at  the points 1 and 2 respectively. 

written, the final computation of the breaking point includes the 

transformation of the non-dimensional values, xx and tt, to dimen- 

sionalized values, xxl and t t l  . 

solved for xx and tt. 

program in the appendix. 

As the program was  

Equations (50) and (51) a r e  readily 

The resulting equations a r e  shown in the 

This completes the description of the computational 

A more general scheme fo r  solving for all the character-  scheme. 

istics was originally developed, programmed and run on the Institute 

for  Space Studies IBM 7090. Subsequently, an e r r o r  was discovered 

in the basic equations. 

tional scheme i t  was decided to  l imit  the investigation to the point 

of initial breaking. The FORTRAN program, which had originally 

been written, was modified to correct  the e r r o r  which was  discovered 

Also, the corrected program was revised for use on the IBM 1604 

which was available a t  NY U's Heights Academic Computing Facility. 

This program is presented in the appendix. For  additional under- 

standing of the computational scheme and the program a flow diagram 

is presented in Figure 4. 

In the course of redeveloping the computa- 

5. The experiments and results 

There were three se r i e s  of experiments put through the 

model. Each ser ies  involved computing the initial breaking point for  

various underlying slopes. The distinguishing property between the 

three ser ies  was the amplitude of the "frontal oscillation" i .  e . ,  

the maximum displacement of the wave generating mechanism. 

can be seen f rom equations (31) and (32) this involves changing the 

As 
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3 COMPUTE SECOND POINT 

I I ON C, 1:x3, t3, c 3  

I 

1 
I I COMPUTE x4, u4, c4 

LET SUBSCRIPT 3' 1 

I 1  1 1  4- 2 

b 

P + 
USING POINT 3 AND POINT 2 

I I COMPUTE c4, t4, u4, x4 

tt = t 

> O  
t 

FROM POINTS 1 AND 2 
COMPUTE INTERSECTION 
O F  Ctl and Ct2: xx, tt 

I 

COMPUTE DIMENSIONAL 
VALUES FOR xx and 
tt:xxl, ttl 

I 
I 

Fig. 4. Flow diagram of the computational scheme for determining 
initial point of breaking. 
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the velocity and acceleration of the "front'l. 

In the first series, the amplitude, a ,  was taken to  be 

5 km, j u s t  as Abdullah (1955) originally used. 

third ser ies  used 10 km and 20 km respectively. 

x 

internal interface at the origin, was 2km. The density difference 

across  the internal interface, (p - p,)/p, was taken to be 0.0156 just  

as Abdullah used. 

of 4.1"C at the interface i f  the lower air mass has a mean tempera- 

ture of 270"A. This figure does not enter the non-dimensional com- 

putations but it is used in  converting the results to  dimensionalized 

variables. 

The second and 

The scale length, 

w a s  l okm in all cases and ho, the undisturbed height of the 
0' 

This corresponds to a temperature inversion 

Various values for  the time interval, 6t*, used to generate 

the first characteristic were tested. It w a s  found that the changes 

in the breaker values were about 1 percent in going from a 6t* of 

0 .02  to a 6t* of 0 .01 for the maximum and minimum values of the 

underlying slope. A 6t* of 0.002 led to  changes in breaker values 

of about 0 . 6  percent from the values for a 6t* of 0.01. 

the amount of computer time to run each case increased to six 

minutes for a 6t* of 0.002 as compared to approximately one minute 

for  a 6t* of 0.01. It w a s  therefore decided to use a 6t* of 0.01 in  

all cases. 

However, 

The last two series of experiments were done for one- 

half of the slope variations used in the first. 

computations a r e  found in  Table I. 

a r e  presented graphically in Figures 5 and 6. 

The results of the 

The non-dimensional results 

In the graphs %* 
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Figure 5.  Non-dimensional initial breaking position as a function of 
underlying slope for various values of a* a s  obtained by 
numerical integration. 
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and t" a r e  plotted against the underlying slope. 

refers to the breaking position. 

The subscript b b 

The results were, in general, as  anticipated. The time of 

breaking decreases as the slope increases. 

breaking is dependent on the time of breaking, as the slope increases 

the disturbance breaks closer to the origin. 

lying slope approaches infinity, the time and position of breaking 

approaches the origin. 

Since the position of 

Obviously, as the under- 

The non-linear effects of the underlying slope on breaking 

position and time a re  clearly seen in both figures. The decrease in 

breaking position and time as the slope increases i s  much larger  

for  small slopes than for large slopes. Another feature which i s  

clearly seen in the graphs is that the initial acceleration of the 

"front" bears a non-linear relation to the position and time of 

breaking. As the initial acceleration increases,  the decrease in 

breaking position and time is diminished. Finally, the initial accele- 

ration of the front is  apparently a more dominant factor than the un- 

derlying slope in determining the position and time of initial breaking. 

However, a s  the acceleration decreases the underlying slope becomes 

increasingly important in  determining x* and t" b b' 

It was decided that an attempt would be made to derive an 

approximate solution for the point of initial breaking. If successful, 

this approximation might be useful for gaining a better understand- 

ing of the interaction between the initial frontal acceleration and th- 

underlying slope a s  they affect the point of initial breaking. 

derivation of the approximation appears i n  the next section. 

The 
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6 .  A perturbation solution for the point of initial breaking 

In this derivation the initial positive characteristic which re- 

presents the leading edge of the wave or disturbance will  be denoted 

by C+ and variables having the subscript 1 a re  values along C+ 1.  

The positive characteristics close to C wil l  be parame- + 1  
terized as follows: 

Choose some point on C+ whose t coordinate is 6t. Con- 

sider the negative characteristic emanating from this point. 

Let the point a t  which this negative characteristic intersects 

the boundary (or frontal motion) curve have the coordinates 

(xo, to). 

from this point. 

the parameter value 6t. 

Thus, the family of characteristics lying in  the neighborhood 

Consider the positive characteristic, C+2 emanating 

Associate with this positive characteristic 

of C+ is parameterized by 6t. Let C+ denote either one particular 

member of the family or  the entire family, depending on the context 

in which it is used. It should be noted that the functions u and c are 

known, a priori, along C+ 1, but nowhere else in the region of motion, 

in particular along the class of curves C + 2' 

Consider some negative characteristic between C+ and C+ 2 .  

The non-dimensional equation of compatibility (34) with asterisks neg- 

lected demands (recalling the initial condition that u1 = 0 ) :  

u - 2 c +  Gt= - 2  c1 + Gt 
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It has been shown by equation (39), that: 

1 c1 = 1 - - 2 G t l  

Combining (52) and (53) 

u - 2~ = - 2  t G(2  tl - t) 

(53) 

(54) 

The equation of compatibility along C from (34) requires: + 2  

u t 2 c + G t = u o + 2 c o t  G t o  (55) 

For any + 2' where the subscript o indicates the first point on C 

point on C+ 

traction of these equations yield the following expressions for u 

and c at any point, x, t on Ct 2: 

(54) and (55) hold simultaneously. Addition and sub- 

U 
u =  

1 C 

+-f+G(p 2 
uO c =  - 
4 

Now from equation (33) the differential equation for C+ is: 

d x  - = u +  c d t  

then from (56) and (57) the differential equation for Ct becomes: 

(56) 

(57) 

(58) 
3 c  

dt  - 4  2 
- -  dx 3 U o t  - 3to + - 4) - 1 / 2  

2 

Now let  t differ from t l ,  the "known" value on C, 1 ,  by a small  

perturbation, e.  It follows that: 
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t = t - €  , 1 (59) 

where € will be considered a function of t and 6t. 

and (59) may be rewritten: 

Integration of this equation from the first point on C, 

other point on C+ 2(x, t) yields 

(xo, to) to any 

(60 1 3 2 
4 0  X =  x0 + - (u  t 2c0+ Gto - 7 )  (t - to) - G 

Now i f  the equation of compatibility for  the negative characteristics 

(52) is applied to the negative characteristic that passes through 

(xo, to) it follows that 

u 0 - 2 ~ ~ + G t ~ = - 2 ~ ~ t G b t  

Applying equation (53) for tl = 6t and substituting in equation (61) 

yields the following expression for co: 

c 0 = 1/2 [uo + 2 t G(to - 2 6t)] (42) 

Substitution of this expression into equation (60) yields the following 

equation for C+ 2: 
2 

2 G t  
x = t - G k t x o +  ~ [ ~ ~ + G ( t ~ - 6 t ) ~ ( t - t ~ ) - t ~ +  + - ? f < d t  (63) 
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. 

Given this equation for C, 2 ,  the procedure for determining 

the initial point of breaking appears straightforward : 

1. By eliminating x between equation ( 6 3 )  and the equation for 

(401, an expression for the time at  which C inter- 

Clearly tb would be a 

and f 

ct 1 t 2  

0' to* 

sects Ct 1, t,,, would be obtained. 

function of uo, xo, to, and C. 

a r e  all functions of bt, % could be written as t,, (at). 
2. Then, if  fb (at) were taken to the limit as  6t approaches 

Since uo, x 

would be derived. tB' zero, the time of initial breaking, 

Thus, a definition of the initial breaking time is 

tg = lim t,, (6t) 
b t -0  

where \ (6t) a r e  the t - coordinates of the intersections 

of the Ct family with C+ 1. 

The difficulty with this procedure is that uo, xo, to and f 

a r e  all unknown functions of 6t. 

relationships between 6t and uo, x 

The main difficulty occurs for E. 

integral of f were applied which apparently yielded good approxima- 

tions for the computed values of the initial breaking time, but these 

all failed when taken to limiting values of the modeling parameters. 

An outline of the procedure for determining t.,, (at) which was finally 

adopted follows: 

It will be shown that the functional 

and to can be approximated. 
0' 

Various approximations for the 

1. Derive an approximate relationship between x and t for 

any given negative characteristic between C, and C, 2 .  
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2 .  Eliminate x between the resulting approximation and the 

equation for  C+ 

which turns out to be an integral equation in C .  

( 6 3 ) .  This yields f (t,  xo, to, uo, 6t, C) = 0 

3. Solve this equation in the form t = h (xo, t o’ U0’ 6t’ €1- 

4. From the definition ( 5 9 )  of the perturbation quantity, C,  

C (t, at) = t - tl 

where t is the t-coordinate on C and t is the corre- 
+ 2  1 

sponding t - coordinate on C+ 1. Now, at the inter section 

of C+ and C+ 1, t = tl = t,, (at). Therefore, 

c (tg at) = 0 

and an expression for fb follows immediately from step 3, 

as 

5.  Then, tg is determined as discussed above. 

The details involved in carrying out this procedure will  be found below. 

Consider the differential equation, (33), for any negative char- 

acteristic: 

Now this differential equation cannot be integrated since the functions 

u and c between C+ (x, t) and C+ (xl, tl) a r e  unknown. However, 

the finite difference approximation analogous to equation(42b) may be 

used here  yielding 
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"'"1 = 1/2  [u - c - cl]  
1 t - t  

Now if  equations (561, (57) and (62) a r e  substituted into (64) and use 

is made of the equation for C+ (40), namely 

then the following is obtained: 

x = t l -  E t 2 + ( t - t l ) [ s + G ( t o  - &  -_  + t l ) - l ]  (65) 
4 4 2 

4 1  

If the "perturbation definition" for the relationship between t and tl, 

(591, is now applied to  (65) the following approximate expression for 

a negative characterist ic between C+ and C+ is obtained: 

- 6t 
x = t -  - Gt2 + ( [ $ - 2 + G ( %  

4 

At any point (x, t) on C+ 

It follows that: 

equations (63) and (66) hold simultaneously. 

xo + 3/2 [uo + G(to - 6t) ] (t - to) - to + 7 Gt: - E f F dt  

i '  to - 6t - f LT - 2 +  G( + t - ? ) ]  = o  

Thus, an integral equation for F has been derived. 

is differentiated with respect to  time the following differential equation 

for € is obtained: 

If this equation 
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. 
6 [uo t G co  - G c]  - -  dr  

dt - u 0 - 8 t  G c o + 4 G t - 1 0 G €  

where c 0  E to - 6t, 

and t a r e  redefined as: 

the value of € at the f i r s t  point on Ct 2. If € 

and 

€ =  ' G [ E t h ]  

t =  ' [ T + k ]  G 

where h and k a r e  constants, (67) may be rewritten: 

6 [u, + G c0  - h] - 6 E 

uo - 8 t G € o t  4 k -  10 h +  4 T -  1 O C  (68 )  LE - - 
dT 

Now h and k may be defined so that all constant t e rms  in the differen- 

tial equation vanish, i. e. 

h = u  + G c o  
0 

k = 2 +  '(u 4 0  t G E o )  

Then equation (68) can be rewritten 

This is a first order linear differential equation which is readily solved 

by standard techniques. The solution follows: 

-213 + E T = B E  
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where B is the constant of integration. 

back into c,  t coordinates yields: 

Transforming this solution 

To evaluate B consider equation (69) at t = t 

by definition. Then 

in which case € = co 
0 

2 /3 
€0  1 uo 

B = [ G ~  - 2 - 5 1 4  u o - 4  e 
0 

From the previous discussion about the relationship between 

the initial breaking of the wave and the convergence of the characteris- 

t ics  it is clear that when € = 0, t = $, the time at which C+2 inter- 

sects  C+ 1. 

equation (69) and then letting c = 0 yields the following approlcimate 

relationship for : 

Therefore, substitution of the expression for B into 

tb 
5 e uO 

t b G  = 1 ( 2 t ~ ( ~ o + G € o ) + [ G t o - 2 - q ~ 0 - 4  GCol[ u 0 + G c 0  

From equation (36): uo = a sin t 

It is now assumed that 6 t  i s  taken small enough so that sin to= to 

and C 0  is replaced by i ts  definition (t - 6t).  

0 

Then, equation (70) becomes: 
0 

\ =  ~ { 8 t  1 5 [ ( a t  G ) t o -  G 6 t ]  

(71 1 a to c 

(a+ G) to - G 6; 1 - 18 - 5 (a + G) to - 9 G 6t][ 

From the definition of the point (xo, to), it is clear that to is a func- 

tion of 6t. An approximation to this relationship wil l  now be derived. 
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Consider the finite difference form of the differential equation 

for the negative characteristic between the first point on Ct 

and the second point on C+ 

form as equation (64): 

(xo, to) 

(xl, bt). This equation will be of the same 

(72) 
1 x0 - XI - -  - (u0 - c0 - cl) (to - bt)  

From the equation of compatibility for this characterist ic (see equa- 

tion [43bJ): 

1 - c = z [ - 2  c1 t G 6t - u0 - Gto] 
0 (73) 

Now from previously derived expressions c (53) and x1 (40) 

may be eliminated from equations (72) and (73). As has been pointed 

out u From 

equation (35) 

1 

may be replaced by a to  for sufficiently small  to (fit). 
0 

x = a ( l  - c o s t  ) 
0 0 

which becomes, after expansion of cos t in  a Taylor's se r ies ,  
0 

2 
x = a 2  

0 

for  sufficiently small  to (bt). Substituting these expressions for u 

and xo into (72) and (73) and eliminating co between them yields, 

after simplification : 

0 

(G t a) t," t [4 - (3 G - a) at] to t 3 G 6t2 - 8 6t = 0 
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Solving for t - 
0' 

- (3 G - a) 6t - 4 L d [ 4  - (3 G - a) 6tI2 - 4 ( G  + a)  (3 G 6t2 - 8 6t) 
to - 2 ( G +  a) 

It is clear that the positive radical must be used since t must 
0 

be zero when 6t is zero. Now i f  the radical is simplified and expanded 

in a power ser ies ,  neglecting te rms  involving powers in 6 t  of three and 

higher, an approfirnation for t follows: 
0 

Substitution of this approximation in equation (71) yields, after 

simplification : 

I"', 2 

2 a +  G - 3 / 2 a ( a + G ) 6 t  
' t  - - 2 a  - 3/2 a 6t ( 8  + (10 a + 5 G )  6t - 18 + (10 a + G) at] [ b -  4G 

In this form of the approximation for  t 

powers of 6t  have been neglected. 

t e rms  involving higher order b '  

As previously discussed, the time of initial breaking follows 

from (74) by taking the limit as 6t goes to  zero. Thus, 

From equation (40): 
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Thus, by equations (75) and (76) the point of initial breaking is deter- 

mined. 

of acceleration and slope. 

Equation (75) wi l l  now be examined for various limiting values 

Consider first the case of a zero underlying slope (G = 0). 

Under this condition the expression is undefined, but the limit as G 

goes to zero gives: 

2 - -  
t~ - 3a 

Parenthetically note, that the differential equation for C (67) 

when G =  0 becomes 

0 
6 u  - - _  dc 

dt u0 - 8 

Solving this equation for t ( € )  and using the same procedure 

as for arbitrary G the following is obtained: 

3 ) (1 - a 6t)  + 2 6t 8 - 2 a 6 t  

1 2 a - 9 a  6 t  2 % =  ( 
Then, setting 6t = 0 as before 

(77) 

which is the same result as equation (77). 

Note that for G = 0, from equation (76), x - . These rela- B - t B  

tionships a r e  non-dimensional. 

ing relations result for the zero slope case: 

If they a r e  made dimensional the follow- 

_ -  2 c  
tB 3a o 
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x = -  c 2  
B 3a! o (79) 

where Q! is the dimensional initial acceleration given by equation (32) 

2 c a  
a = -  

as : 

0 

X 
0 

where a is non-dimensional. 

Abdullah (1949) has  performed a mathematical analysis of a 

model such as that used here with zero slope and with the "front" mov- 

ing from r e s t  with constant acceleration. 

solution to the governing equations. 

derived values for  the point of initial breaking which a r e  exactly those 

given by (78) and (79). 

He derived an analytical 

From the analytical solution he 

Consider the case of an infinite slope (G = Q)). Under this cond- 

tion tB = % = 0 .  This trivial resul t  is to be expected. 

Thus, the derived solution for the position and time of initial 

breaking is verified in  so far as it gives correct  resul ts  for the vari- 

ous extremes in the modeling parameters .  As a further verification 

consider the resul ts  computed from the perturbation solution for the 

various values of initial acceleration and slope used in  the finite dif- 

ference approximation computations. 

Table II. 

integration approximation and the perturbation solution, a r e  presented 

in  Figures 7 and 8. 

These results a r e  presented in  

For  comparison purposes, the r e s u l t s  from the numerical 

An examination of the derivation of the perturbation solution 

reveals that it is applicable to any model in which: 



Table 11: Perturbation Solution Results 
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V x  

0 
.Ol 
.02 
.03 
.04 
.05 
.06 
.07 
.08 

.09 

.10 

.l l  

.12 

.13 

.14 

.15 

.16 

.17 

. 18 

.19 

.20 

4 a =0.5 

8 
XB t; 

1.33 1.33 
1.26 1.28 
1.19 1.23 
1.13 1.19 
1.08 1.15 
1.03 1.11 
0.98 1.07 
0.94 1.04 
0.90 1.01 
0.87 0.98 
0.84 0.95 
0.81 0.92 
0.78 0.90 
0.75 0.87 
0.72 0.85 
0.70 0.83 
0.68 0.81 
0.66 0.79 
0.64 0.77 
0.62 0.76 
0.60 0.74 

* 
a = 1.0 

8 

xB t3B 

0.67 0.67 

0.63 0.64 

0.60 0.62 

0.57 0.59 

0.54 0.57 

0.51 0.55 

0.49 0.53 

0.47 0.52 

0.45 0.50 

0.43 0.49 

0.42 0.47 

* 
a =2.0 

0.333 

0.323 

0. 315 

0.308 

0.299 

0.291 

0.284 

0.277 

0.271 

0.263 

0.257 

0.333 

0.326 

0.320 

0.315 

0.309 

0.302 

0.297 

0.292 

0.287 

0.282 

0.276 
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solution results for  initial breaking position 
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1. the equation of motion is sufficiently regular,  i. e . ,  has  at 

least  three continuous derivatives, 

2 .  the wave generating mechanism starts from res t  with a non- 

dimensional acceleration, a, 

3. all other aspects of the model a r e  the same as the model 

used in this study. 

This generalization of the perturbation result  follows from the approxi- 

mations made for the functions x (t ) and u (t ). 
0 0  0 0  

The case treated by Abdullah (1949), which was  previously d is -  

cussed, satisfies the three above conditions with the special property 

that 3 remains constant. 

sul t  for the initial breaking point agrees  with the result  derived here.  

It i s ,  therefore, not surprising that his re- 

If the equations for the time (75) and position (76) of initial break- 

ing a r e  made dimensional the following a r e  obtained: 

Formulas (80) and (81) determine the point of initial breaking in t e rms  

of: 

s - the underlying slope 

ho - the undisturbed height of the interface (inversion) 

g' - the density weighted gravitational acceleration 

(Y - the initial "frontal" acceleration 

for any model satisfying the three conditions specified above. 

It follows that the effect of the underlying slope on the point of 

initial breaking, under the idealized conditions of the model, is explicitly 

given by (80) and (81). 
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7. Conclusion 

As mentioned in Section 1 of this report ,  Tepper and Abdullah 

have advanced the hypothesis that the atmospheric breaking wave (or 

pressure jump) is a cause of pre-cold frontal squall lines. If this hypo- 

thesis is true it might be reasonable to expect that the distance between 

the modelled point of initial breaking and the "front" should be of the 

same order of magnitude as the distance which is observed in  the at- 

mosphere between the front and the squall line. 

is readily obtainable f rom standard meteorological charts.  

an attempt wil l  be made to investigate the consistency of the perturba- 

tion solution with the physical hypothesis by means of observations 

under the assumption of a very simple model. 

The latter distance 

Therefore, 

In an analysis of twenty-four pre-cold frontal squall lines, 

Miller (1958) found that the composite squall line was  about 180 nauti- 

cal miles ahead of the composite cold front. 

position of the squall line centers was  in southern Illinois. 

gion the underlying slope, when averaged over distances of the order 

of a hundred nautical miles,is effectively zero. 

The mean geographical 

In this re- 

Consider, first, the results of the numerical computations. 

From Table I, for a zero slope, the maximum x,, is 13.5km. From 

the equation of frontal motion (30), the position of the front at t = t,, = 

770 seconds can be determined. The distance between the squall line 

and the front is approximately 9.6 km or about 5.2 nautical miles. 

This is almost one and a half o rders  of magnitude less  than the dis- 

tance reported by Miller. The wave begins to break close to the front 
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because of the high initial acceleration (1 12 k ts /hr )  used in the model. 

While instantaneous frontal accelerations as high as this may be ob- 

served, on the average frontal accelerations must be considerably 

smaller.  

Of course, without the perturbation solution, the point of initial 

Also, for breaking cannot be predicted in advance of the computations. 

the sake of speed in  computing the results a high initial acceleration is 

not unreasonable. Thus, without the perturbation solution, in order to  

obtain results which would be comparable to those obtained by Miller, 

many experiments would have to be carried out on the computer. Such 

an expensive trial and e r ro r  process would not yield any conclusive re- 

su l t s .  

equation for the motion of the "front", it is a straightforward procedure 

to determine the initial frontal acceleration necessary to  achieve vari- 

ous distances between the front and the initial point of breaking. 

However, with the perturbation solution and a sufficiently simple 

Consider the simplest model which permits use of the perturba- 

tion solution, i. e . ,  a model with the "front" starting from res t  with a 

constant acceleration, a. 

tion, x 

In this case the equation for the frontal posi- 

at the time of initial breaking, tg, is: F' 

From this formula and (78) and (79) i t  can be shown that the acceleration, 

(kts/hr), which is necessary to  cause the wave to begin breaking at a 

distance, d (nautical miles), from the front is given by: 

t 
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CY = 544.44/d 

where c 

the value of co which was  used in all of the previous computations. The 

required accelerations and resulting times of intial breaking correspond- 

ing to  various values of d a r e  given in  Table 111. 

has been taken as 35 kts in (78) and (79). This is approximately 
0 

Table 111: Computations for a Simple Atmospheric Model 

Distance between front and Constant frontal Time of initial 
initial point of breaking acceleration breaking 

d(n. m. ) CY (kts /hr)  tg (hr) 

100 

I25  
150 

175 

5.4 

4.4 

3.6 

3.1 

4.3 

5.3 
6.5 

7.5 

Thus, to obtain values of 

order of magnitude as Miller's results, frontal accelerations a r e  required 

which a r e  certainly observable i n  the atmosphere. 

breaking is merely presented to indicate the time scales required for the 

development of the phenomena which may be associated with the breaking 

atmospheric wave. 

for this simple model which a r e  of the same 

The time of initial 

It would be ideal i f  observations of frontal accelerations were 

available in cases of squall line formation. 

meteorological observations wi l l  permit only computations of approxi- 

mate frontal accelerations averaged over six hours. Thus, one must 

evaluate the reasonableness of accelerations of the order  of those pre- 

sented in Table 111. It is hoped that other measures of the plausibility 

of both the Tepper-Abdullah hypothesis wil l  be evaluated in the near future. 

Unfortunately, standard 
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These measures will be, in all likelihood, of an indirect nature just as 

the very simple one presented above. 
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1 -  

. 

I .  

c 

The FORTRAN program which was  used to determine the point 

of intersection of C+ and C+ is presented below. The following 

definitions relate the notation used in the program to that used in  the 

text: 

A1 = a  
D T =  6t 

s = v *  

w = l/xo 
co= co 

G R =  g 

0 
H O = h  

T = t  
x = x  

c = c  
u = u  

DD = (P - Po)/P 
Al l  variables and c-nstants a r e  non-dimensional with the excep- 

tion of GR(g). HO(ho), CO(co)  and W(x0')  which a re  all in c.g.s.  

units. The numbers associated with X, T, U, and C a r e  the same 

as the subscripts attached to x, t, u, and c in the text. All other 

le t ters  a r e  for variables and constants used in the course of the com- 

putations. The program follows: 

READ 9000, A1 
READ 9000, DT 
READ 9000, S, DD, HO 
GR= 980.616 
w =  0.000001 
CO= SQRT (GR*DD*H0*100000.0) 

1 



18 

25 

c 

. 

29 
30 
31 
34 
35 

32 
37 

38 
36 

33 
24 

39 

40 

42 

G= S /  (0. l*HO) 
T3 = DT 
X3 = T3* (1.0-0.25*G*T3) 
C3 = 1.O-O.5*WT3 
E=O.02 
E2 = 0.002 
E3  = 0.0002 
K =  1 
T4= T3 
A=-4.O*C 3 t  G*T3 
B=4.O*Al-4.O*X3+A*T3 
DT 1 = 0.5*E 
N I T =  1 
FF = 0 
D= (WT4-A-  WT3)  *T4+ B 
R=O. 5*(T4-T3)*SIN(T4)+2.O*COS(T4) 
F=D-2.O*AI*R 
IF (F) 29,39,30 
IF (F t  E) 31,38,38 

IF (F*FF) 32,34,34 

NIT = NIT+ 1 
T4= T4+ DTl  
FF= F 
GO to  25 

IF (F-E) 38,38,31 

IF (NIT- 1000) 35,35,42 

IF (2-K) 37,38,38 
T4= T4- 0.00005 
GO TO 39 

E = E 2  
GO to 24 
E = E 3  

K = K + 1  
GO TO 18 

U4 = Al*SIN (T4) 

Z=U4+2.O*C4+WT4 
IF (SENSE SWITCH 1) 40,43 
PUNCH 9006 
PUNCH 9000, X3, T3, C3 
PUNCH 9000, X4, T4, C4, U4 
GO TO 43 
PRINT 9001, T1 
GO TO 950 

IF (2-K) 39,33,36 

T 4 = T 4 - D T 1  

X4 = A 1 * ( 1 . 0 - COS ( T4)) 

C4= 0.5* (U4+ 2.0*C3- W (T3- T4)) 
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. 

43 Tl=T3 
X1= X3 
Cl=C3 
T2= T4 
x2=x4 
C2=C4 
U2=U4 

T3= T3=Tl+DT 

66 

67 
68 

71 

75 
78 
80 
90 

9000 
900 1 
9002 
9003 
9004 
9005 
9006 
9009 

950 

X3=T3*(1.0-0.25*WT3) 
C3=1.0-0.5*WT3 
A= U2+ C2 
B=-C3 
C4=0.25*(2-2.O*B-WT3) 

Ql = 2 0 * ( X3 - XZ)-D* ( T3- T2 ) 
Q3=2.O*CetA-B- W( T3-T2) 

U4= D- G* T4 
X4=XZ+ 0.5 *( U4+ C 4 A ) *  (T4- T2) 

D=O. 5*(2+2.O*B+G*T3) 

T4= (Q1+ Q2) / Q3 

IF(SENSE SWITCH 1)66,67 
PUNCH 9000, X3, T3, C3 
PUNCH 9000, X4, T4, C4, U4  
IF(T3-T4)43,68,71 
xx= x4 
TT=T4 
GO TO 75 
B-Cl 
TT= (Xl-XZ+A*TZ-B*Tl) / (A-B) 
XX= X2+A* ( T T- T2 ) 
TTl=TT/(W*CO) 
IF(SENSE SWITCH 3)80,90 
PRINT 9000, XX, TT 
PUNCH 9002 
PUNCH 9003, S, DD, HO, CO 
PUNCH 9004 

PUNCH 9009 
GO TO 1 
FORMAT (F10.5, F10.5, F10.5, F10.5) 
FORMAT(28H FAILED TO CONVERGE T(1, J)=F10.5) 

FORMAT (F7.3, F12.5, F6.1, F14.5) 
FORMAT(42H xx TT xx1 TT1) 
FORMAT (F10.5, F10.5, F12.5, F12.5) 

FORMAT(1H ) 
STOP 
END 

PUNCH 9005, XX, TT, XXI, TTL 

FORAUT(34H SLOPE DELTADEN HO GO) 

FORMAT (3 6H) X T C U) 


